
Performance of Supertree Methods on Various
Dataset Decompositions

Usman Roshan
�

Bernard M.E. Moret† Tiffani L. Williams†

Tandy Warnow
�

Abstract

Many large-scale phylogenetic reconstruction methods attempt to solve hard
optimization problems (such as Maximum Parsimony (MP) and Maximum Like-
lihood (ML)), but they are severely limited by the number of taxa that they can
handle in a reasonable time frame. A standard heuristic approach to this problem
is the divide-and-conquer strategy: decompose the dataset into smaller subsets,
solve the subsets (i.e., use MP or ML on each subset to obtain trees), then com-
bine the solutions to the subsets into a solution to the original dataset. This last
step, combining given trees into a single tree, is known as supertree construction
in computational phylogenetics. The traditional application of supertree meth-
ods is to combine existing, published phylogenies into a single phylogeny. Here,
we study supertree construction in the context of divide-and-conquer methods for
large-scale tree reconstruction.

We study several divide-and-conquer approaches and experimentally demon-
strate their advantage over Matrix Representation Parsimony (MRP), a traditional
supertree technique, and over global heuristics such as the parsimony ratchet. On
the ten large biological datasets under investigation, our study shows that the tech-
niques used for dividing the dataset into subproblems as well as those used for
merging them into a single solution strongly influence the quality of the supertree
construction. In most cases, our merging technique—the Strict Consensus Merger
(SCM)—outperforms MRP with respect to MP scores and running time. Divide-
and-conquer techniques are also a highly competitive alternative to global heuris-
tics such as the parsimony ratchet, especially on the more challenging datasets.

1 Introduction

Supertree methods combine smaller, overlapping subtrees into a larger tree. Their tra-
ditional application has been to combine existing, published phylogenies, on which
the community agrees, into a tree leaf-labeled by the entire set of species. The most
popular supertree method is Matrix Representation Parsimony (MRP) (Baum, 1992;
Ragan, 1992), which has been used in a number of phylogenetic studies (Purvis, 1995;

�

Department of Computer Science, U. of Texas at Austin, usman,tandy@cs.utexas.edu
† Department of Computer Science, U. of New Mexico, moret,tlw@cs.unm.edu

1



Bininda-Emonds et al., 1999; Bininda-Emonds and Sanderson, 2001; Liu et al., 2001;
Jones et al., 2002). Bininda-Emonds and colleagues (Bininda-Emonds and Sanderson,
2001; Bininda-Emonds, 2003a) have evaluated the behavior of several variants of MRP
on small simulated datasets with respect to topological accuracy.

We study the application of supertree methods in a different context: as part of
divide-and-conquer methods that can be used to solve difficult optimization problems
such as Maximum Parsimony (MP) and Maximum Likelihood (ML) (Felsenstein, 1981;
Foulds and Graham, 1982; Steel, 1994; Hillis et al., 1996). These two problems are
sufficiently hard that a biologically acceptable phylogenetic analysis can take a very
long time (months, perhaps) to derive. The conjecture we study in this paper is that
divide-and-conquer strategies can speed up searches for optimal trees under MP and
ML.

A divide-and-conquer method for phylogeny reconstruction operates as follows.

� Step 1: Decompose the dataset into smaller, overlapping subsets.
� Step 2: Construct phylogenetic trees on the subsets using the desired “base”

phylogenetic reconstruction method.
� Step 3: Merge the subtrees into a single (not necessarily fully resolved) tree on

the entire dataset.
� Step 4: Refine the resulting tree to produce a binary tree.

Several divide-and-conquermethods have been developed and studied, including quartet-
based methods, of which Quartet Puzzling (Strimmer and von Haeseler, 1996) is the
most popular, and the family of Disk-Covering Methods (DCMs) (Huson et al., 1999a,b;
Nakhleh et al., 2001; Warnow et al., 2001; Tang and Moret, 2003). In each of these
methods, a supertree method (Step 3) is used to combine subtrees into a tree on the
entire dataset. Supertree methods are thus an integral aspect of a divide-and-conquer
strategy, but the other three aspects of such a strategy also affect accuracy and speed.
Our study addresses the following questions:

� Should the subtrees used in reconstruction be carefully selected in terms of the
subsets they represent or can the subsets be arbitrary as long as some overlap
exists among them?

� Given a fixed collection of overlapping subtrees, what is the best method to as-
semble them into a single supertree?

� How do divide-and-conquermethods fare when compared to “global” approaches,
such as the heuristic MP searches in PAUP* (Swofford, 2002)?

To investigate the first two questions, we compare methods that differ explicitly in how
they decompose the dataset and how they merge subtrees into a supertree. We con-
sider two variants in the DCM family (named DCM1 and DCM2), plus (as a control)
random decompositions; these decompositions are coupled with MRP and/or the Strict
Consensus Merger (the supertree method developed for the DCM family) to merge the
resulting subtrees into a single supertree; finally, all combinations of methods are fol-
lowed by a refinement phase. To ascertain whether divide-and-conquer approaches can

2



outperform “global” approaches to solving MP or ML, we compare the performance
of our DCM strategies with the parsimony ratchet (Nixon, 1999), one of the best per-
forming MP heuristics for large datasets.

1.1 Overview of Experimental Results

We compare these methods on ten biological datasets that range from 328 to 854 taxa,
focusing on the question of how techniques used for dataset decomposition and su-
pertree reconstruction impact the running time and the MP score of the result. We
find that the DCM2+SCM method outperforms the other methods on all our datasets.
The specific decomposition technique has a significant impact on the MP score of the
resulting tree as well as on running time, with DCM2 clearly outperforming random
decompositions. Furthermore, we obtain improved MP scores in all decomposition
strategies (DCM and random) when the subproblems are large—an observation that
impacts taxon-sampling strategies. The supertree method used to combine subtrees
into a single tree on the full dataset is also very important. When MRP and SCM are
followed by the same resolution technique in Step 4, SCM generally produces better
MP scores than MRP. The only exception was for DCM1-based decompositions, but
these decompositions are relatively poor and not competitive (as our results show).

Our study demonstrates that the benefit of a divide-and-conquer technique depends
on the properties of the dataset. When the dataset can be decomposed well by DCM2—
into significantly smaller subproblems with good overlap, DCM2 provides a clear ad-
vantage (in running time or MP scores, as desired). The advantage is most pronounced
for challenging datasets, datasets for which heuristic MP searches take a long time to
find a first good solution. We compared DCM2-based approaches with the parsimony
ratchet—the best MP global heuristic in our experiments—on two biological datasets:
the well-studied 500 rbcL DNA dataset (Rice et al., 1997) and a set of 816 Bacte-
rial rRNA sequences (Wuyts et al., 2002). The rbcL dataset decomposes poorly and
is not especially challenging for MP heuristics; our study shows that DCM2 provide
no improvement over the parsimony ratchet for this problem. In contrast, the rRNA
dataset is quite challenging for MP heuristics but decomposes well; our study shows
that DCM2 clearly improves on the parsimony ratchet for this problem. (Interestingly,
DCM2-Ratchet, using the parsimony ratchet as a base method in a DCM2 decomposi-
tion, is almost as good as a global ratchet on the rbcL dataset, in spite of the very poor
decomposition.)

1.2 Comparison with Previous Work

Bininda-Emonds and colleagues (Bininda-Emonds and Sanderson, 2001; Bininda-Emonds,
2003a) studied supertree reconstruction from an experimental point of view, focusing
on the MRP method and using small simulated datasets. While we also study MRP,
our focus is as much on decomposition as it is on supertree reconstruction and so we
study several other methods; moreover, our testing uses biological datasets rather than
simulated ones, thereby forcing us to use MP scores as our measure of accuracy (since
the true trees for these datasets are not known); finally, we focus on large datasets (lim-
ited in this study to datasets below 1,000 taxa due to the dearth of larger published

3



datasets), since these are the datasets where a divide-and-conquer methodology will
have the largest impact.

Some of the earliest divide-and-conquer methods are quartet-based methods, such
as Quartet Puzzling (Strimmer and von Haeseler, 1996), Short Quartet methods (Erdős
et al., 1997), and Quartet Cleaning (Berry et al., 1999). Quartet methods are at one
extreme of divide-and-conquer methods, since they decompose the datasets into the
smallest possible subsets for which nontrivial trees exist—subsets of just four taxa
each. Quartet-based methods cannot profitably use either MRP or SCM (the two su-
pertree reconstruction techniques we study here): MRP is too expensive given the tiny
trees and SCM will usually return a totally unresolved tree because too many quartets
will be in conflict. In an earlier study (St. John et al., 2001), we compared various
quartet-based methods and the fast and simple neighbor-joining method (NJ) (Saitou
and Nei, 1987) on simulated data. Quartet Puzzling, which merges quartet trees using
a greedy heuristic, clearly dominated the other quartet-based methods, but was much
slower and clearly less accurate than NJ. These results suggest that decompositions
into tiny subsets is not profitable. Other published divide-and-conquer methods include
Compartmentalization (Mishler, 1994), which is not fully described and so cannot be
implemented, and a strategy used to analyze a biological dataset (Olsen et al., 1994),
where again the decomposition and merging steps are not well enough described to
enable one to implement and test the strategy.

2 Divide-and-Conquer Reconstruction Methods

Recall that a divide-and-conquer method uses four basic steps to construct a supertree
from a given dataset, S:

� Step 1: Decompose the dataset into smaller, overlapping subsets.
� Step 2: Construct phylogenetic trees on the subsets using the desired “base”

phylogenetic reconstruction method.
� Step 3: Merge the subtrees into a single (not necessarily fully resolved) tree on

the entire dataset.
� Step 4: Refine the resulting tree to produce a binary tree.

Steps 2 and 4 are the same in all of our algorithms (except for our study of global
heuristics versus divide-and-conquer methods in Section 5). We use a slow heuristic
search for MP as the “base method” to construct the subtrees, but a fast heuristic search
for MP to refine the merged supertree into a binary tree. Thus, our methods differ only
in how they implement Steps 1 and 3. Sections 2.1 and 2.3 describe the techniques
used for data decomposition and subtree merging. A summary of all of the supertree
methods used in our study is given in Section 2.5.

4



2.1 Data Decomposition

2.1.1 DCM-based decomposition

Disk-Covering Methods (DCMs) (Huson et al., 1999a,b; Nakhleh et al., 2001; Warnow
et al., 2001) are meta-methods for phylogenetic reconstruction: they operate in con-
junction with a “base method” such as an MP heuristic or NJ. DCMs decompose the
input set into smaller overlapping sets on which subtrees are computed using the spec-
ified base method. They have a dual goal: improved accuracy and better speed. Be-
cause the subsets have smaller diameter (maximum pairwise distance) than the original
dataset, they are less likely to cause accuracy problems; and because the possibly ex-
pensive base methods only have to solve small subsets, the overall algorithm runs faster.
One goal can be stressed at the expense of the other; thus there are several DCMs, each
of which was designed for use with a particular base method.

The first DCM, DCM1 (Huson et al., 1999a), was designed for methods such as NJ,
whose topological accuracy is negatively affected by large pairwise distances. DCM1
thus attempts to minimize the evolutionary diameter of each subproblem: it produces
many subproblems, each with small diameter, but does not control the overlap be-
tween the subproblems. Earlier studies we conducted (and confirmed here) showed
that DCM1 does not work particularly well with heuristic MP as a base method. There-
fore, we developed DCM2 (Huson et al., 1999b), which produces a small number (two
or three is typical in experiments presented here) of subproblems, all of which share
one subset of taxa and are otherwise disjoint. Thus DCM2 tightly controls the overlap
pattern, but does not directly attempt to control the diameter of each subset, thereby
producing larger disks than DCM1.

The input to both DCM1 and DCM2 is a set S � �
s1 ��������� sn � of n taxa (typically,

aligned biomolecular sequences), an n � n matrix, D �
	 di j � , containing an estimate of
the pairwise distances between the taxa, and a threshold—a particular q � �

d i j � . Both
methods start by computing a threshold graph, G 	 d � q � , defined as follows:

� The vertices of G 	 d � q � are the taxa, s1 � s2 ��������� sn.
� The edges of G 	 d � q � are those pairs 	 si � s j � obeying di j 
 q.

The graph is then minimally triangulated, i.e., edges are added to the graph until every
cycle of length at least four has a chord (an edge connecting two non-consecutive ver-
tices on the cycle) (Buneman, 1974; Golumbic, 1980), while attempting to minimize
the weight of the largest edge added. Obtaining an optimal triangulation of a graph is
in general NP-hard (Bodlaender et al., 1992), but threshold graphs are usually trian-
gulated or close to it (Huson et al., 1999a)—and our experience shows that even the
simple greedy heuristic produces triangulations that do not have very long edges. We
triangulate the threshold graph because triangulated graphs have many computationally
useful properties, notably:

� they have a linear number of maximal cliques (cliques that cannot be increased
by adding a vertex) and these cliques can be computed in polynomial time; and

� their minimal vertex separators (minimal connected subgraphs whose removal
breaks the graphs into disconnected pieces) are maximal cliques.

5



A

A

A

1

2

A3

4

X

S
ti

Tq

(a) (b) (c)

Figure 1: The three steps of Phase I in DCM2: (a) compute clique separator X for set
S in threshold graph G 	 d � q � , producing subproblems A1 � X , A2 � X ,. . . , Ar � X ; (b)
compute tree ti for each subproblem Ai � X ; and (c) merge computed subtrees to obtain
tree Tq for set S.

(In contrast, these two problems are NP-hard for general graphs.) Thus, the next step
in DCMs is to compute the maximal cliques. At this point, DCM1 is done and simply
returns these cliques as the subproblems in the decomposition; these cliques have low
diameter by construction. DCM2 scans through the cliques to find one clique X that
minimizes maxi

�
X � Ai

�
, where the Ai are the pieces into which the graph is broken

upon removal of X ; it then returns the subsets X � Ai as the subproblems in the decom-
position. Note that these subproblems have a unique common intersection, but that
their diameter can be much larger (because of the addition of the separator X) than that
of a subproblem generated by DCM1. Figure 1 shows a symbolic representation of the
DCM2 decomposition. We have proved that, as long as the subtrees are correctly in-
ferred and the subproblems are large enough, the Strict Consensus Merger (SCM) tech-
nique applied to the subtrees will produce the true tree (Huson et al., 1999a). These
theorems have ramifications for both DCM1- and DCM2-based strategies, but espe-
cially for DCM1 combined with distance-based methods; for these combinations it is
possible to prove nice theorems about the sequence length requirements of the resulting
methods (Huson et al., 1999a; Warnow et al., 2001).

However, our goal in this study is practical rather than theoretical: we want to de-
velop faster and more accurate algorithms that perform well in practice. We experiment
with different decompositions in order to determine which ones produce the best em-
pirical results, so that improved MP scores are obtained faster. We pick a minimum
triangulation to avoid grouping taxa that are evolutionarily distant (which would result
in long edges in the triangulated graph). In developing the threshold graph, we need to
choose a threshold q. The smallest useful value for q is d0, the smallest possible value
for which the threshold graph G 	 d � q � is connected; the largest possible value is simply
max

�
di j � . (Note that, if we applied the algorithm to this largest value, we would not

obtain any decomposition into smaller subproblems, since the threshold graph would
already be a clique.) In our experiments we look at ten equally spaced values between
d0 and d10 � max

�
di j � and run all tests with values d0 and d4.

6



2.1.2 Random decomposition

As a control for DCM2, we also considered the effects of decomposing a dataset into
random overlapping subsets, using three parameters: the number x of subproblems, the
desired minimum size y of each subproblem, and the desired minimum size z of the
pairwise intersection of subsets. Let n be the number of taxa to be distributed among
the subsets. The x subsets are populated as follows. First, z taxa are randomly selected
and all of them are placed into each of the subsets. For each subset, we then randomly
select an additional y � z taxa from the remaining available taxa (marking the chosen
y � z taxa as unavailable). Finally, if any taxa have not yet been placed in any particular
subset, we add these taxa randomly to subsets. The resulting decomposition mimics
the structure of DCM2 in that it produces subsets with a shared subset, but otherwise
pairwise disjoint.

2.2 Base Methods: Heuristic Searches for MP

Heuristic searches for MP trees form a basic part of our divide-and-conquer reconstruc-
tions in three places: using a base method on subproblems to construct subtrees, using
MRP to merge subtrees into a supertree, and refining the resulting tree into a binary
tree. The heuristic MP search (HS) of PAUP*4.0b10 (Swofford, 2002) was used for
these analyses since the datasets are too large (in the hundreds) for exact optimization.
Experiments were performed on simulated data in order to determine the quality of the
HS needed in each stage.

� Fast HS: A fast heuristic search in which we save only one tree, starting from one
initial random sequence addition ordering. We use the PAUP*4.0b10 commands:
set criterion=parsimony maxtrees=1 increase=no;

hsearch start=stepwise addseq=random swap=tbr hold=1 nreps=1;

� Medium HS: Medium heuristic search with ten random sequence addition order-
ings and 100 saved trees. We use the PAUP*4.0b10 commands:
set criterion=parsimony maxtrees=100 increase=no;

hsearch start=stepwise addseq=random swap=tbr hold=1 nreps=10;

contree all/ strict=yes;

� Slow HS: A slow heuristic search with 100 random sequence addition orderings
and 1,000 saved trees. We use the PAUP*4.0b10 commands:
set criterion=parsimony maxtrees=100 increase=no;

hsearch start=stepwise addseq=random nreps=100 nchuck=1 chuckscore=1

swap=tbr;

set maxtrees=1000 increase=no;

filter best=yes;

hsearch start=current swap=tbr hold=1 nchuck=1000 timelimit=3600;

contree all/ strict=yes;

We also used the parsimony ratchet (Nixon, 1999) in a PAUP*4.0b10 implementation
written by Bininda-Emonds (Bininda-Emonds, 2003b). The ratchet is a simple and
effective heuristic for general optimizing search and works iteratively as follows:

7



1. Run Fast HS for MP.

2. Randomly select 25% of the sites, set their weights to 2 and run Fast HS on the
perturbed data, starting with the tree from the previous search.

3. Reset the site weights to their original values and run Fast HS starting with the
tree from the previous search.

4. Repeat steps two and three as desired.

2.3 Merging Subtrees

2.3.1 Matrix representation parsimony (MRP)

The MRP approach encodes a set T of trees as binary characters with missing values
(i.e., “partial binary characters”) and then applies some heuristic for maximum parsi-
mony on the resulting set of sequences. Understanding how MRP works thus requires
understanding the encoding and the interpretation of partial binary characters.

Let S denote the full set of taxa and let T be one of the trees in the set T —thus T
has leaf set S0

� S. Let e be an arbitrary edge in T . Deleting e from T partitions the
leaves of T into two sets A and B. Now define a character ce on all of S by setting

ce 	 s � �
��� �� 0 if s � A

1 if s � B

? otherwise

The set C 	 T � � �
ce : � T � T � e � E 	 T ��� is the MRP encoding of the set T of trees.

Given a set of sequences defined by partial binary characters and a candidate tree
T on the set of sequences, all ?s are replaced by 0 or 1 in such a way as to minimize
the parsimony score of the tree. If every subtree in the MRP analysis is accurate (i.e.,
topologically identical to the true tree induced on its set of leaves), then the true tree is
one of the maximum parsimony trees. Hence, an exact solution to maximum parsimony
will return the true tree as one of the solutions. (This observation follows from the
fact that the true tree is a “perfect phylogeny” (Bodlaender et al., 1992) for the MRP-
encoded set of sequences.)

For MRP, we used Slow HS. Since the search can identify more than one tree of
lowest score, we return the strict consensus of the best trees found—the most resolved
tree that is a common contraction of these best trees.

2.3.2 Strict-consensus merger (SCM)

The Strict Consensus Merger (SCM) combines a set of trees into a single tree. The
merging is done pairwise until only one tree is left. The specific order in which the
trees are merged matters when the subtrees are defined by a DCM1 decomposition,
but is irrelevant when the subtrees are defined by a DCM2 decomposition; hence, for
DCM2 it suffices to describe how SCM operates on two trees. (For specifics on how
SCM operates in a DCM1 analysis, see (Huson et al., 1999a).)

8



A

B

E

C D

F B D

EA

Figure 2: Tree T restricted to leaf set
�
A � B � D � E �

1

5 5

4
7

3

1 2
4 6

3

1 2

5

2

53

4 6

1 2

3

3 3

1 1

6 6

4 47 7

8

9

8

9

8 9

7
8 9 4 Collision: 6, 7, and subtree Gordon’s Strict Consensus

2 2

(8,9) connect to the same
edge

Supertree

Figure 3: Handling collisions in the SCM and Gordon’s Strict Consensus Supertree. The bipar-
tition ��� 1,2,3,4,5,6,7 � , � 8,9 ��� is present in the supertree under SCM, but not in Gordon’s Strict
Consensus Supertree.

Let L 	 T � denote the set of leaves of T , C 	 T � denote the set of bipartitions of T ,
and TX , with X � L 	 T � , denote the tree obtained by restricting the leaf set of T to X
and suppressing nodes of degree 2 (see Figure 2). SCM takes two trees T1 and T2 and
returns a tree T12 on the leaf set L 	 T1 � � L 	 T2 � according to the following procedure:

� Set X � L 	 T1 ��� L 	 T2 � . X is the backbone and must satisfy
�
X

���
3.

� Compute the strict consensus, TX , of T1 and T2, each restricted to the leaf set X .
� Add the remaining taxa from T1 and T2 into TX to form T , so as to preserve as

much structure as possible. Some piece of each tree T1 and T2 may attach onto
the same edge of TX (causing a collision).

Figure 3 illustrates the SCM algorithm on incompatible trees with a collision, i.e., an
edge in the backbone to which both trees contribute pieces; the backbone is highlighted
with thick edges. The Strict Consensus Merger handles collisions in the following way.
If an edge e of the backbone has a collision, then we subdivide the edge, producing a
new node ve, to which all contributions will be attached; in each subtree T contributing
to this edge, we identify all pieces of T that should attach to that edge and attach them
directly to ve.

The Strict Consensus Merger of two trees is very similar to Gordon’s Strict Con-
sensus Supertree (SCS) (Gordon, 1986). When the trees are compatible (there is no
collision), the two methods produce the same output. However, when there is a colli-
sion, the SCS tree can be a strict contraction of the SCM tree, because it may contract
additional edges located within pieces involved in the collision.

9



2.4 Optimal Tree Refinement (OTR)

Merging subtrees into supertrees using MRP or SCM can result in unresolved trees; all
steps up to and including the merging step are perhaps best seen as attempts to identify
the best-supported edges. Resolving the remaining polytomies (by adding edges) so
as to minimize the parsimony score of the resulting tree is the NP-hard Optimal Tree
Refinement (OTR) problem (Bonet et al., 1998). To “solve” it, we pass unresolved trees
as constraint trees to PAUP*4.0b10 and use a fast MP heuristic search for a resolved
tree, using the following command:
constraints c1 (monophyly) = <the unresolved tree which is used as constraint>;

set criterion=parsimony maxtrees=1 increase=no;

hsearch start=stepwise addseq=random swap=tbr hold=1 nreps=1

constraints=c1 enforce=yes;

2.5 Supertree Methods Studied

By varying the techniques used to obtain the dataset decomposition into subsets and
those used to merge subtrees into supertrees, we obtain many different divide-and-
conquer methods. For each such method, we also have a choice of parameters. We
study DCM1 and DCM2, each with a supertree construction phase of MRP or SCM,
plus the random decomposition followed by MRP. (SCM can be used to construct su-
pertrees on an arbitrary set of subtrees, but the order in which the trees are merged
can have a big impact on the resulting supertree; because of this, further research is
needed before we can understand how SCM performs with random decompositions.)
For DCM1, we use only threshold d0, whereas for DCM2 we use both d0 and d4. Thus
the methods we test are:

� DCM1 � SCM 	 d0 �
� DCM2 � SCM 	 d0 �
� DCM2 � SCM 	 d4 �
� DCM1 � MRP 	 d0 �
� DCM2 � MRP 	 d0 �
� DCM2 � MRP 	 d4 �
� RANDOM � MRP

3 Experimental Methodology

We ran two sets of experiments. The first set of experiments was designed to test two
conjectures: (i) that careful decomposition of the dataset is crucial to the success of
supertree methods and that the DCM methods offer such a careful decomposition; and
(ii) that the Strict Consensus Merger (SCM) developed as part of DCM is superior to
MRP as a supertree assembly tool. The second set of experiments was designed to test
our conjecture that divide-and-conquer methods are a competitive alternative to global
heuristics.

10



We use large biological datasets to test these conjectures. Biological datasets suffer
from several disadvantages when used in testing algorithms: (i) we cannot produce
“tailored” biological datasets designed to test specific aspects of the reconstruction
algorithms; (ii) we cannot judge the outcomes on the basis of accuracy (because we
do not know the “true” tree) and so must instead rely on substitute criteria, such as
maximum parsimony scores or maximum likelihood scores; and (iii) we cannot use
them to predict behavior on other datasets (because we do not know how to relate the
specific characteristics of one biological dataset to those of another). On the other
hand, biological datasets offer data with all the biases and peculiarities that are so hard
to produce in simulations. Thus the main use of “real-world” data is in spot-checking
(Moret, 2002)—confirming that predictions made on the basis of simulation results
hold for biological data or pinpointing problems with models when the datasets yield
incompatible results. In this study, we choose biological datasets for two reasons:
(i) we need them for spot-checking our conjectures, which we derived from large-
scale simulation studies that we have already conducted (St. John et al., 2001; Nakhleh
et al., 2002; Moret et al., 2002); and (ii) no comparable experimental study has been
conducted—existing reports are limited to small biological datasets or to just one larger
dataset.

Since our conjectures may hold in significant parts of the parameter space, but not
everywhere, we study the effect of various parameter settings. We parameterize the
decomposition in terms of subset sizes and mean coverage (where the mean coverage
is the mean number of subsets in which a taxon appears). Of course, each taxon must
appear in at least one subset, but reconstruction requires mean coverage greater than
1 � (otherwise we would obtain a forest and not a tree). We match the size and coverage
characteristics of random decompositions to our DCM decompositions and study the
variation in parsimony scores as a function of subset sizes or coverage.

3.1 The Datasets

We obtained ten biological datasets (all biomolecular sequences) from various sources.
Below we give a brief description of each dataset, noting the number of sequences,
their lengths, and the maximum p-distance (normalized Hamming distance) between
any two sequences in the set.

1. A set of 328 ITS RNA sequences (946 sites) from the flowering plant Astera-
caeae obtained from the Gutell Lab at the Institute for Cellular and Molecular
Biology, The University of Texas at Austin; max p-distance � 0 � 524.

2. A set of 439 aligned rDNA sequences of Eukaryotes (2,461 sites) (Goloboff,
1999); max p-distance � 0 � 649.

3. A set of 476 aligned Metazoan DNA sequences (1,008 sites) (Goloboff, 1999);
max p-distance � 0 � 445.

4. A set of 500 aligned rbcL DNA sequences (759 sites) (Rice et al., 1997); max
p-distance � 0 � 334.

5. A set of 556 aligned 16S rRNA sequences (2,402 sites) for the Spirochaetes class
of Bacteria (Maidak et al., 2001); max p-distance � 0 � 31.

11



6. A set of 567 “three-gene” (rbcL, atpB, and 18s) aligned DNA sequences (4,592
sites) (Soltis et al., 2000); max p-distance � 0 � 15.

7. A set of 590 aligned small subunit Archaea rRNA sequences (1,962 sites) (Wuyts
et al., 2002); max p-distance � 0 � 382.

8. A set of 695 aligned 16S rRNA sequences (2,550 sites) for the Cyanobacteria
class of Bacteria (Maidak et al., 2001); max p-distance � 0 � 219.

9. A set of 816 aligned 16S rRNA sequences (1,253 sites) for the Bifidobacteriales
(132), Acholeplasmataceae (234), and Flexibacteraceae(family) (450) families
of Bacteria (Wuyts et al., 2002); max p-distance � 0 � 46.

10. A set of 854 aligned rbcL DNA sequences (937 sites) (Goloboff, 1999); max
p-distance � 0 � 39.

Recall that the DCM-based approaches require a distance matrix to compute the
threshold graph as the first step of its computation—and also that the distance matrix
does not play any role in the phylogenetic reconstruction beyond this first step. We
use the Kimura 2-parameter (plus Gamma) (Kimura, 1980; Yang, 1993) distance cor-
rection formula to compute a distance matrix for each dataset, using parameter values
of κ � 2 and α � 1 (the “default” values). We do not need the model to fit the data
particularly well, since it affects only the choice of edges in the threshold graph; never-
theless, it is possible that a better distance correction (such as could be obtained using
MODELTEST (Posada and Crandall, 1998)) would yield better results. In other words,
our results with the DCM-based approaches should be regarded as pessimistic—they
establish a lower bound, but are subject to further improvement.

3.2 Implementation and Platforms

Our DCM implementations are a combination of C++ (which uses LEDA 4.3) and
Perl scripts; they were originally written by Daniel Huson and further expanded by
us. The random decomposition is also a combination of C++ and Perl scripts and was
written by us. To run the MP heuristics used for solving the subproblems, for MRP,
and for OTR (optimal tree refinement), we use constrained search as implemented in
PAUP*4.0b10 (Swofford, 2002).

Our experiments were run on two sets of processors running Debian Linux: the
phylofarm cluster of 9 dual 500MHz Pentium III processors, and 16 dual 733MHz
Pentium III processors which are part of the 132-processor SCOUT cluster. For our
running time analysis, we provide the running time (in seconds) of each of the four
major steps separately, as follows:

� Decomposition: For the DCM-based methods this includes the running time for
computing and triangulating the threshold graph and finding the subproblems.
For the random methods it is the time to form the subproblems.

� Base method: This is the total running time for Slow HS on all the subproblems.
� Merge: This is the running time to merge the subtrees into a supertree using

MRP or SCM.

12



� Optimal Tree Refinement (OTR): This is the cost of running Fast HS with the
(unresolved) tree obtained in the previous step as a constraint tree in PAUP*.

We only show selected data in the following sections; complete data from our experi-
ments is available on our web site at www.cs.utexas.edu/users/phylo/supertree chapter/.

4 Results on Decompositions

4.1 Comparing Different DCMs

We begin by examining the six different DCM-based approaches defined in Section 2.5.
Figures 4 and 5 show relative MP scores and running times on the ten datasets. The
best method (in terms of MP scores) is consistently DCM2+SCM at either d0 or d4; the
other methods are not nearly as competitive. (MP scores that are lower even by these
small percentages are often considered significant in phylogenetic analysis.)

Furthermore, SCM is better than MRP at combining subtrees in nearly all cases.
(The only exception is DCM1 decompositions, but these decompositions are relatively
poor and clearly not competitive.) Moreover, running times show that MRP is far
more expensive than SCM—a matter of hours vs. seconds. Therefore, we focus on
DCM2+SCM, since it is clearly the best divide-and-conquer strategy we tested. Our
first task is to determine a suitable threshold. Figures 6 and 7 (using the data of Figures
4 and 5) show that DCM2+SCM(d4) outperforms DCM2+SCM(d0) on most of the
ten datasets. This improvement in MP scores as we increase the threshold value is
consistent with previous studies (Huson et al., 1999b) and our recent simulation studies
(not shown). Note that, as we increase the threshold, the maximum subproblem size
increases, but the number of subproblems decreases; hence the total running time may
decrease. For DCM2+SCM, whether for threshold d0 or d4, by far the most costly
aspect of the reconstruction is the time spent in the MP heuristics—in reconstructing
trees on the subsets and, to a lesser extent, in the OTR phase; in contrast, the DCM and
SCM phases are very fast. (These data are not shown here, but are available from our
web site.)

4.2 Comparing Random Decompositions

With random decompositions, we must use the MRP supertree method, since SCM
is specifically designed for DCMs. Our goal here is to understand the effect of the
(random) decomposition, in particular, the size of subsets and the amount of coverage,
on the quality of reconstructions.

We want the coverage (the average number of subsets in which a taxon appears) to
run from 2 � to 5 � and the size of the subproblems to range from 10% to 90% of the
dataset, so we we choose the number of subproblems to be

number of subproblems � floor
�

coverage � total size
subproblem size �

So as not to bias the subset decomposition any further, we set the parameter z (the
minimum overlap size) to 0 and let the pairwise overlap be induced through the number
of subproblems and subproblem sizes as chosen above.

13



1 2 3 4 5 6 7 8 9 10
0.998

1

1.002

1.004

1.006

1.008

1.01

1.012

Biological Dataset#M
P

 s
co

re
 n

or
m

al
iz

ed
 w

.r
.t.

 th
e 

D
C

M
2+

S
C

M
(d

0)
 M

P
 s

co
re

DCM1+MRP(d
0
) 

DCM2+MRP(d
0
) 

DCM1+SCM(d
0
) 

DCM2+MRP(d
4
)

DCM2+SCM(d
4
)

Figure 4: Comparison of the MP scores of DCM-based approaches on ten biological
datasets, normalized with respect to the MP score of DCM2+SCM(d0).

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

Biological Dataset#R
un

ni
ng

 ti
m

e 
no

rm
al

iz
ed

 w
.r

.t.
 D

C
M

2+
S

C
M

(d
0)

 r
un

ni
ng

 ti
m

e

DCM1+MRP(d
0
)

DCM2+MRP(d
0
)

DCM2+MRP(d
4
)

DCM1+SCM(d
0
)

DCM2+SCM(d
4
)

Figure 5: Comparison of the running times of DCM-based approaches on ten biological
datasets, normalized with respect to the running time of DCM2+SCM(d0).

14



1 2 3 4 5 6 7 8 9 10
0.99

0.992

0.994

0.996

0.998

1

1.002

Biological Dataset#M
P

 s
co

re
 n

or
m

al
iz

ed
 w

.r
.t.

 th
e 

D
C

M
2+

S
C

M
(d

0)
 M

P
 s

co
re

DCM2+SCM(d
4
)

Figure 6: The ratio of the MP scores of DCM2+SCM(d0) to those of DCM2+SCM(d4)
on ten biological datasets.

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

Biological Dataset#R
un

ni
ng

 ti
m

e 
no

rm
al

iz
ed

 w
.r

.t.
 D

C
M

2+
S

C
M

(d
0)

 r
un

ni
ng

 ti
m

e

DCM2+SCM(d
4
)

Figure 7: The ratio of the running times of DCM2+SCM(d0) to those of
DCM2+SCM(d4) on ten biological datasets.

15



We solve the subproblems using Fast HS for MP (see Section 2) and run MRP using
Medium HS for MP (defined by a time limit of 600 seconds). We examine 5 values
of average subproblem sizes: 10%, 30%, 50%, 70% and 90% of the dataset. For each
average subproblem size, we examine coverages of 2 � , 3 � , 4 � and 5 � . The detailed
results on each of the 10 datasets are available on our website. Unsurprisingly, we fiund
that MRP applied to random decomposition does much better with larger subsets and
somewhat better with increased coverage, as was also observed in (Bininda-Emonds
and Sanderson, 2001). Furthermore, as the subproblem sizes become larger, the MP
scores of MRP on random decompositions slowly approach those of DCM2+SCM(d0).

4.3 DCM vs. Random Decompositions

We now explore the relative performance of DCM2 decompositions and random de-
compositions. We run DCM2+SCM(d0) only as a benchmark, but focus on DCM2+MRP(d0),
since we can ensure that MRP is applied to closely comparable decompositions. (We
can set the three parameters for random decomposition so as to produce the same num-
ber of subsets as DCM2, with closely matched average subset sizes and coverage.) We
use Slow HS for MP on the subproblems as well as for MRP and again report the av-
erage over 5 runs for the random decomposition. Figures 8 and 9 plot the ratios of
MP scores (and running times) of DCM2+MRP and of MRP on random decomposi-
tions to the MP scores (and running times) of DCM2+SCM. (In addition MP scores
for the trees obtained by each method, along with other details, can be found on our
website.) The results clearly indicate that DCM2+SCM does better, in terms of both
MP scores and running times, than either DCM2+MRP or MRP on random decompo-
sitions, with this last doing worst of all. Thus DCM2 decompositions are better than
random decompositions and SCM does a better job at assembling supertrees from such
decompositions than MRP (scores and resolution are both better). Moreover, MRP is
very slow: on some datasets, the time difference is on the order of hours of compu-
tation, hours that could be used to conduct a more thorough parsimony search on the
subtrees or in the OTR phase of DCM2+SCM. (We have not run such an equal-time
comparison, but we expect that the gap in parsimony scores returned by DCM2+SCM
and the other methods would be widened.)

5 Results on Global Heuristics

Our results suggest that a DCM2+SCM analysis is both faster and more accurate (in
terms of MP scores) than the other divide-and-conquer methods studied. How then
does DCM2+SCM compare to a direct (global) heuristic approach? We expect that
the DCM approach will prove better on those datasets that yield good decompositions
(into a small number of substantially smaller datasets with good overlap), but need to
ascertain how the DCM approach performs when decompositions are poor.

We selected two datasets: the 500 rbcL dataset and the 816-taxon rRNA dataset.
These two datasets are selected so as to explore how DCM2 behaves under extreme
conditions. The first dataset is a poor candidate for improvement with DCM2: it de-
composes poorly and is not challenging (simple heuristic searches quickly find a solu-

16



1 2 3 4 5 6 7 8 9 10

1

1.02

1.04

1.06

1.08

1.1

Biological Dataset#M
P

 s
co

re
 n

or
m

al
iz

ed
 w

.r
.t.

 th
e 

D
C

M
2+

S
C

M
(d

0)
 M

P
 s

co
re

RANDOM(avg)
DCM2+MRP(d

0
)

Figure 8: Comparison of MP scores of DCM-based methods and RANDOM (averaged
over 5 runs) normalized with respect to the DCM2+SCM(d0) MP scores on each of the
ten biological datasets.

1 2 3 4 5 6 7 8 9 10

1

1.2

1.4

1.6

1.8

2

2.2

Biological Dataset#R
un

ni
ng

 ti
m

e 
no

rm
al

iz
ed

 w
.r

.t.
 D

C
M

2+
S

C
M

(d
0)

 r
un

ni
ng

 ti
m

e

RANDOM (avg)
DCM2+MRP(d

0
)

Figure 9: Comparison of running times of DCM-based methods and RANDOM (aver-
aged over 5 runs) normalized with respect to the running time of DCM2+SCM(d0), on
each of the ten biological datasets.

17



tion within a couple of steps of the best score known). The second dataset, in contrast,
should enable DCM2 to yield an improvement: it decomposes well and is quite chal-
lenging.

We first explore various global heuristics to identify the method that performs
best on the the 500 rbcL dataset; this experiment shows that the parsimony ratchet
significantly improves upon other local search heuristics in PAUP*. We then use
the parsimony ratchet both as a base method for DCM2+SCM (yielding a method
we call DCM2-Ratchet, that also includes a final OTR phase) and as a global opti-
mization heuristic, comparing the performance of these methods on each of our two
datasets. Finally, we explore the performance of a two-phase technique in which we
use DCM2+SCM to produce a starting tree for a subsequent search (using the ratchet)
and we compare the performance of this two-phase technique to the ratchet. For this
last experiment, we compare methods by examining the progress of each method over
the period of time needed by the global parsimony ratchet to find the best score for
each of the two datasets.

5.1 Local Improvement Heuristics on the 500 rbcL Dataset

We use the 500 rbcL dataset to explore the performance of various local improvement
heuristics, as implemented in as implemented in PAUP*4.0b10. These include the par-
simony ratchet and heuristics of the form fast-k max-m. The fast-k max-m heuristic is
implemented using the following commands:
set criterion=parsimony maxtrees=k increase=no;

hsearch start=stepwise addseq=random nreps=k swap=tbr nchuck=1 chuckscore=1;

set maxtrees=m increase=no;

hsearch start=current swap=tbr nchuck=m chuckscore=no;

We use 200 iterations of the ratchet (i.e., ratchet200) and vary k and m, thus pro-
ducing the following set of heuristics to compare:

� fast100-max100
� fast500-max100
� fast1000-max100
� fast100-max1000
� fast500-max1000
� fast1000-max1000
� ratchet200

These heuristics are studied on the 500 rbcL dataset, restricted to just the parsimony-
informative sites. The best score found to date on this dataset is 16,218. We address
two questions: how quickly does each heuristic find the best known score and how
quickly does it approach it?

We run each heuristic 10 times and collect the average MP score at each time step.
Figure 10 shows the MP score of the best tree found by each heuristic as a function of
time—up to a time beyond which none of the heuristics finds better trees. Note that

18



0 2 4 6 8 10 12 14 16 18
16216

16218

16220

16222

16224

16226

16228

Time (hours)

M
P

 s
co

re
 o

f b
es

t t
re

e

fast100−max100
fast500−max100
fast1000−max100
fast100−max1000
fast500−max1000
fast1000−max1000
ratchet200

Figure 10: Comparison of heuristics on the rbcL dataset. Each heuristic was run 10
times; plotted is the average MP score at each time step.

the curve for ratchet200 lies strictly below the curves for the other methods: thus, at
each time point, ratchet200 finds shorter trees than any of the other methods. Also,
ratchet200 finds trees with the lowest known length within two hours, while the other
methods cannot find such short trees. Thus, the ratchet is much more effective than the
fast-k max-m techniques in finding trees with low MP scores. Other experiments (not
shown here) confirm that the ratchet is better on our large datasets than the fast-k max-
m heuristics. We therefore use the ratchet as the base method for DCM2 and compare
it against the global ratchet.

5.2 Global Ratchet vs. DCM2-Ratchet on the 500 rbcL Dataset

We use DCM2-Ratchet with two different levels of OTR. We use the smallest possi-
ble threshold (d0) and obtain decompositions that minimize the maximum subproblem
size. Unfortunately, even the smallest threshold yields a huge separator of size 411,
so that the two subsets in the decomposition have sizes 455 and 456—quite a poor
decomposition. (A larger threshold cannot help, since it would produce even larger
subproblems.) We compare these two variants of DCM2-Ratchet against 200 itera-
tions of the global ratchet. Each method is run 10 times and the average MP score at
each time step is collected. Figure 11 shows that the DCM2-boosted variants of the
ratchet are able to find trees almost as good as those found by the global ratchet, but
not as fast.

19



0 0.5 1 1.5 2
16217

16218

16219

16220

16221

16222

16223

Time (hours)

M
P

 s
co

re
 o

f b
es

t t
re

e

ratchet200
DCM2(d0)

ratchet25
−OTR

ratchet10
DCM2(d0)

ratchet25
−OTR

ratchet25

Figure 11: Comparison of DCM2-Ratchet to ratchet200 on Dataset #4 (averaged over
10 runs). The average subproblem size is 91%.

5.3 Global Ratchet vs. DCM2-Ratchet on the 816 rRNA Dataset

On the 816 rRNA dataset, the DCM2 decomposition at threshold d0 produces 2 sub-
problems of sizes 369 and 450—a good result. Unfortunately, the separator is tiny (just
3 nodes), which makes it difficult for SCM to merge trees with sufficient accuracy.
Therefore, we pick a larger separator (with 36 nodes) in order to get more overlap. For
this separator, we get three subproblems of sizes 132, 270, and 486.

Since this is a larger dataset than the 500 rbcL, we use 500 iterations of ratchet
(ratchet500) for the global analysis. The subproblems are again computed using 25
iterations of the ratchet and three different iteration counts are used for the OTR phase:
ratchet5, ratchet10, and ratchet25. Each method is run 5 times and the average MP
score at each time step is collected. The global ratchet version finishes in about 48
hours. Figure 12 shows that, within the first two hours, DCM2 finds better trees than
the global ratchet.

5.4 Using DCM2-Ratchet for Initialization

Because DCM2-Ratchet is fast and returns good solutions, it could prove useful in a
two-phase optimization procedure, by providing strong initial solutions from which
to start a global search. To study this approach, we run the global ratchet with the
DCM2-Ratchet trees as starting trees; as might be expected, the global ratchet finds
better trees when started with these initial solutions than when started from scratch.
Figures 13(a) and 13(b) show the curve of (average) scores as a function of time for
the global ratchet alone (started from scratch) and the global ratchet applied to the
initial solutions returned by DCM2-Ratchet. For dataset #9 (the 816 RNA dataset), for

20



0 10 20 30 40 50
30115

30120

30125

30130

30135

30140

30145

30150

Time (hours)

M
P

 s
co

re
 o

f b
es

t t
re

e

ratchet500
DCM2(d0−36)

ratchet25
−OTR

ratchet5
DCM2(d0−36)

ratchet25
−OTR

ratchet10
DCM2(d0−36)

ratchet25
−OTR

ratchet25

Figure 12: Comparison of DCM2-Ratchet to ratchet500 (best heuristic) on Dataset #9
(averaged over 5 runs). The average subproblem size is 36% (maximum is 60%) and
the separator size is 4% of the problem size.

instance, DCM2ratchet25-OTRratchet25 finds trees with an MP score of 30,115 within
approximately 26 hours, whereas the best trees found by the global ratchet (at the end
of 48 hours) have an MP score of 30,117.

6 Summary and Conclusions

We set out to explore the potential of divide-and-conquer methods to improve the
speed and accuracy of maximum parsimony searches; in particular, we wanted to learn
which decomposition strategies and which supertree assembly techniques work well in
such approaches. Our study confirms that divide-and-conquer methods can speed up
searches for optimal MP trees, but (unsurprisingly) only when the decompositions are
good.

The specifics of the divide-and-conquer strategy make a large difference. We had
already shown that quartet-based methods (an extreme form of divide-and-conquer)
are not competitive. We now find that random decompositions are clearly inferior to
carefully crafted ones (e.g., decompositions obtained by DCM2) and that the strict con-
sensus merger (SCM) technique for merging subtrees is both more accurate and much
faster than the most commonly used supertree method, matrix representation parsi-
mony (MRP). Both approaches, however, usually require an optimal tree-refinement
(OTR) phase in which the supertree is refined into a binary tree, a phase to which more
attention should be given in future work.

The significance of this study is both enhanced and limited by our use of biolog-
ical datasets: we ensure relevance, but can only conduct fairly simple tests—a large

21



0 0.5 1 1.5 2
16217

16218

16219

16220

16221

16222

16223

Time (hours)

M
P

 s
co

re
 o

f b
es

t t
re

e
ratchet200
DCM2(d0)

ratchet25
−OTR

ratchet10
DCM2(d0)

ratchet25
−OTR

ratchet25

(a) Dataset #4 (rbcL500), using ratchet200

0 10 20 30 40 50
30115

30120

30125

30130

30135

30140

30145

30150

Time (hours)

M
P

 s
co

re
 o

f b
es

t t
re

e

ratchet500
DCM2(d0−36)

ratchet25
−OTR

ratchet5
DCM2(d0−36)

ratchet25
−OTR

ratchet10
DCM2(d0−36)

ratchet25
−OTR

ratchet25

(b) Dataset #9 (816 RNA), using ratchet500

Figure 13: Comparison of the global ratchet started from scratch against the same
started from the DCM2-Ratchet solutions.

22



simulation study is required to confirm our findings as well as discern more subtle
effects. Other research questions suggested by this study include: (i) how best to de-
compose datasets for which DCM2 does not produce a good decomposition? (ii) how
long should base methods be allowed to run on subproblems? (iii) what is the influence
of the OTR phase on the entire process? and (iv) how can we best combine divide-and-
conquer and global approaches (in the style of the approach discussed in Section 5.4)?

All of the work in this study concerns maximum parsimony, but divide-and-conquer
methods, including the DCMs, are equally applicable to maximum likelihood—thus a
study of DCM-ML approaches remains to be conducted.

Finally, MP and ML are surrogate optimization criteria for the real goal, which is
topological accuracy (unmeasurable in absence of knowledge of the “truth”), hence
conclusions about the accuracy of reconstruction must await a simulation study, in
which the “true” trees are known. We conjecture that, while large decreases in parsi-
mony scores (or large increases in likelihood scores) do translate into increased topo-
logical accuracy, small changes in these scores around near-optimal values have a
nearly random effect on topological accuracy—in which case there is no point in spend-
ing additional days of computation to improve a score by 0.01% and every reason to
devise early termination tests.

We conclude with a caveat: in reconstructing a very large tree, such as the Tree of
Life with millions of taxa, we may not have the luxury of choosing our decompositions—
the data-gathering process may have made that choice for us, at least at the higher tax-
onomic levels. For instance, significant data may be missing for many taxa, so that it
is not feasible to analyze all sequences all at once. In such a case, the dataset decom-
position will be given to us and thus will not be adjustable (except for the breaking of
large clusters). We thus also need a large-scale evaluation of supertree methods in their
traditional use.

7 Acknowledgments

This work was supported by the National Science Foundation under grants ACI 00-
81404 (Moret), DEB 01-20709 (Moret and Warnow), EIA 01-13095 (Moret), EIA
01-13654 (Warnow), EIA 01-21377 (Moret), EIA 01-21680 (Warnow), and EIA 99-
85991 (Warnow, the SCOUT Cluster), by the David and Lucile Packard Foundation
(Warnow), and by an Alfred P. Sloan Foundation Postdoctoral Fellowship in Computa-
tional Molecular Biology, U.S. Department of Energy DE-FG03-02ER63426 (Williams).

References

Baum, B. (1992). Combining trees as a way of combining data sets for phylogenetic
inference, and the desirability for combining phylogenetic trees. Taxon 41, 3–10.

Berry, V., T. Jiang, P. E. Kearney, M. Li, and T. Wareham (1999). Quartet cleaning: Im-
proved algorithms and simulation. In Proc. 7th European Symposium on Algorithms
(ESA 99), pp. 313–324. Springer Verlag. Volume 1643 of LNCS.

23



Bininda-Emonds, O. (2003a). MRP supertree construction in the consensus setting. In
M. Janowitz, F.-J. Lapointe, F. McMorris, B. Mirkin, and F. Roberts (Eds.), Biocon-
sensus, Volume 61 of DIMACS Monographs, pp. 231–242. American Mathematical
Society.

Bininda-Emonds, O. (2003b). Ratchet implementation in PAUP*4.0b10. available
from http://www.tierzucht.tum.de:8080/WWW/Homepages/Bininda-Emonds.

Bininda-Emonds, O. and M. Sanderson (2001). Assessment of the accuracy of ma-
trix representation with parsimony analysis supertree construction. Systematic Biol-
ogy 50, 565–579.

Bininda-Emonds, O. R. P., J. L. Gittleman, and A. Purvis (1999). Building trees by
combining phylogenetic information: a complete phylogeny of the extant Carnivora
(Mammalia). Biological Reviews 74, 143–175.

Bodlaender, H., M. Fellows, and T. Warnow (1992). Two strikes against perfect phy-
logeny. In Proc. Int’l Conf. Automata, Languages, and Programming ICALP’92,
Volume 623 of Lecture Notes in Computer Science, pp. 273–283. Springer-Verlag.

Bonet, M. L., M. Steel, T. Warnow, and S. Yooseph (1998). Better methods for solving
parsimony and compatibility. Journal of Computational Biology 5(3), 391–408.

Buneman, P. (1974). A characterization of rigid circuit graphs. Discrete Mathematics 9,
205–212.

Erdős, P. L., M. Steel, L. Székély, and T. Warnow (1997). A few logs suffice to build
almost all trees– I. Random Structures and Algorithms 14, 153–184.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maximum likeli-
hood approach. Journal of Molecular Evolution 17, 368–376.

Foulds, L. R. and R. L. Graham (1982). The Steiner problem in phylogeny is NP-
complete. Advances in Applied Mathematics 3, 43–49.

Goloboff, P. (1999). Analyzing large data sets in reasonable times: solution for com-
posite optima. Cladistics 15, 415–428.

Golumbic, M. (1980). Algorithmic graph theory and perfect graphs. Academic Press
Inc.

Gordon, A. D. (1986). Consensus supertrees: the synthesis of rooted trees containing
overlapping sets of leaves. Journal of Classification 3, 335–348.

Hillis, D., C. Moritz, and B. Mable (1996). Molecular Systematics. Sinauer Pub.,
Boston.

Huson, D., S. Nettles, and T. Warnow (1999a). Disk-covering, a fast-converging
method for phylogenetic tree reconstruction. Journal of Computational Biology 6,
369–386.

24



Huson, D., L. Vawter, and T. Warnow (1999b). Solving large scale phylogenetic prob-
lems using DCM2. In Proc. 7th Int’l Conf. on Intelligent Systems for Molecular
Biology (ISMB’99), pp. 118–129. AAAI Press.

Jones, K. E., A. Purvis, A. MacLarnon, O. R. P. Bininda-Emonds, and N. B. Simmons
(2002). A phylogenetic supertree of the bats (mammalia: Chiroptera). Biological
Reviews 77(2), 223–259.

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substi-
tutions through comparative studies of nucleotide sequences. Journal of Molecular
Evolution 16, 111–120.

Liu, F.-G. R., M. M. Miyamoto, N. P. Freire, P. Ong, and M. Tennant (2001).
Molecular and morphological supertrees for eutherian (placental) mammals. Sci-
ence 291(5509), 1786–1789.

Maidak, B., J. Cole, T. Lilburn, C. P. Jr, P. Saxman, R. Farris, G. Garrity, G. Olsen,
T. Schmidt, and J. Tiedje (2001). The RDP-II (Ribosomal Database Project). Nucleic
Acids Research 29(1), 173–4.

Mishler, B. D. (1994). Cladistic analysis of molecular and morphological data. Amer-
ican Journal of Physical Anthropology 94, 143–156.

Moret, B. (2002). Towards a discipline of experimental algorithmics. In M. Gold-
wasser, D. Johnson, and C. McGeoch (Eds.), Data Structures, Near Neighbor
Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges,
Volume 59 of DIMACS Monographs, pp. 197–213. American Mathematical Society.

Moret, B., U. Roshan, and T. Warnow (2002). Sequence length requirements for
phylogenetic methods. In Proc. 2nd Int’l Workshop Algorithms in Bioinformat-
ics (WABI’02), Volume 2452 of Lecture Notes in Computer Science, pp. 343–356.
Springer-Verlag.

Nakhleh, L., B. Moret, U. Roshan, K. S. John, and T. Warnow (2002). The accuracy of
fast phylogenetic methods for large datasets. In Proc. 7th Pacific Symp. Biocomput-
ing (PSB’2002), pp. 211–222. World Scientific Pub.

Nakhleh, L., U. Roshan, K. St. John, J. Sun, and T. Warnow (2001). Designing fast
converging phylogenetic methods. In Proc. 9th Int’l Conf. on Intelligent Systems
for Molecular Biology (ISMB’01), Volume 17 of Bioinformatics, pp. S190–S198.
Oxford U. Press.

Nixon, K. C. (1999). The parsimony ratchet, a new method for rapid parsimony anal-
ysis. Cladistics 15, 407–414.

Olsen, G. J., C. R. Woese, and R. Overbeek (1994). The winds of (evolutionary)
change: breathing new life into microbiology. Journal of Bacteriology 176, 1–6.

Posada, D. and K. A. Crandall (1998). Modeltest: testing the model of dna substitution.
Bioinformatics 14(9), 817–818.

25



Purvis, A. (1995). A composite estimate of primate phylogeny. Philosophical Trans-
actions of the Royal Society of London Series B 348, 405–421.

Ragan, M. (1992). Phylogenetic inference based on matrix representation of trees.
Molecular Phylogenetics and Evolution 1, 53–58.

Rice, K., M. Donoghue, and R. Olmstead (1997). Analyzing large datasets: rbcL 500
revisited. Systematic Biology 46(3), 554–563.

Saitou, N. and M. Nei (1987). The neighbor-joining method: A new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.

Soltis, D. E., P. S. Soltis, M. W. Chase, M. E. Mort, D. C. Albach, M. Zanis,
V. Savolainen, W. H. Hahn, S. B. Hoot, M. F. Fay, M. Axtell, S. M. Swensen, L. M.
Prince, W. J. Kress, K. C. Nixon, and J. S. Farris (2000). Angiosperm phylogeny in-
ferred from 18s rDNA, rbcL, and atpB sequences. Botanical Journal of the Linnean
Society 133, 381–461.

St. John, K., T. Warnow, B. Moret, and L. Vawter (2001). Performance study of phylo-
genetic methods: (unweighted) quartet methods and neighbor-joining. In Proc. 12th
Ann. Symp. Discrete Algorithms (SODA’01), pp. 196–205. SIAM Press.

Steel, M. A. (1994). The maximum likelihood point for a phylogenetic tree is not
unique. Systematic Biology 43(4), 560–564.

Strimmer, K. and A. von Haeseler (1996). Quartet puzzling: A quartet maximum
likelihood method for reconstructing tree topologies. Molecular Biology and Evolu-
tion 13(7), 964–969.

Swofford, D. L. (2002). PAUP*: Phylogenetic analysis using parsimony (and other
methods). Sinauer Associates, Underland, Massachusetts, Version 4.0.

Tang, J. and B. Moret (2003). Scaling up accurate phylogenetic reconstruction from
gene-order data. In Proc. 11th Int’l Conf. on Intelligent Systems for Molecular Biol-
ogy ISMB’03, Volume 19 (Suppl. 1) of Bioinformatics, pp. i305–i312.

Warnow, T., B. Moret, and K. St. John (2001). Absolute convergence: True trees
from short sequences. In Proc. 12th Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA’01), pp. 186–195. SIAM Press.

Wuyts, J., Y. V. de Peer, T. Winkelmans, and R. D. Wachter (2002). The European
database on small subunit ribosomal RNA. Nucleic Acids Research 30, 183–185.

Yang, Z. (1993). Maximum likelihood estimation of phylogeny from DNA sequences
when substitution rates differ over sites. Molecular Biology and Evolution 10, 1396–
1401.

26


